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Abstract. The assessment of in vivo 18F images targeting amyloid deposition is currently carried on by visual rating with an
optional quantification based on standardized uptake value ratio (SUVr) measurements. We target the difficulties of image
reading and possible shortcomings of the SUVr methods by validating a new semi-quantitative approach named ELBA. ELBA
involves a minimal image preprocessing and does not rely on small, specific regions of interest (ROIs). It evaluates the whole
brain and delivers a geometrical/intensity score to be used for ranking and dichotomic assessment. The method was applied
to 504 18F-florbetapir images from the ADNI database. Five expert readers provided visual assessment in blind and open
sessions. The longitudinal trend and the comparison to SUVr measurements were also evaluated. ELBA performed with area
under the roc curve (AUC) = 0.997 versus the visual assessment. The score was significantly correlated to the SUVr values
(r = 0.86, p < 10−4). The longitudinal analysis estimated a test/retest error of �2.3%. Cohort and longitudinal analysis
suggests that the ELBA method accurately ranks the brain amyloid burden. The expert readers confirmed its relevance in
aiding the visual assessment in a significant number (85) of difficult cases. Despite the good performance, poor and uneven
image quality constitutes the major limitation.
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INTRODUCTION

The latest research criteria for diagnosing
Alzheimer’s disease (AD) suggest that in vivo quan-
tification of brain amyloid-β (Aβ) deposition using
positron emission tomography (PET) is emerging
as a crucial tool in diagnosing or in excluding AD
([1] but also [2, 3]) and is likely to play a pivotal
role in upcoming clinical trials of disease modifying
agents [4–6].

The foreseeable increase in the use of this testing
methodology, the sensitive nature of the outcome for
the patient prognosis, and the availability of different
radioligands pose new challenges to clinicians.

Currently, human readers who want to acquire the
necessary expertise are counseled to attend ligand-
specific courses, often brought in by pharmaceutical
companies, where visual evaluation procedures tend
to favor a dichotomic reading (positive/negative).
This approach is justified by the apparent scarcity of
cases where the ligand uptake distribution cannot be
easily identified or where its spatial extent is limited.
Indeed, while most amyloid-PET images are rather
easily evaluated by a trained eye, as amyloid-PET
becomes a widespread tool uncertain instances are
going to be met more and more frequently.

Because of the non-trivial visual assessment in a
non–negligible number of cases, a more sophisticated
approach is required, which provides quantification
(and rank) besides classification.

Clinicians can currently rely on commercially
available quantification software, usually based on
the numerical estimation of the Standardized Uptake
Value ratio (SUVr) [7]. Briefly, SUVr procedure cal-
culates the ratio of PET counts between a number of
target regions of interest (ROI) versus a reference one.
This way entails a significant image preprocessing to
ensure that the ROIs are properly placed. In addition,
ROI number, placement and size vary among imple-
mentations and they often require human feedback.

We believe therefore that there is room to improve
the PET image reading by relaxing some of the con-
straints imposed by the SUVr approach (accurate
image registration, the use of uptake and reference
ROI) while providing robust ranking among subjects
and proportionality to the visual assessment. With
that, we do not wish to replace or belittle the estab-
lished visual and SUVr-based semi-quantifications.
Rather, the intent is to complement those with a novel
and independent approach, with the goal of providing
more robust and diversified knowledge on difficult-
to-read cases.

This work proposes a method for the EvaLuation
of Brain Amyloidosis (hereafter named “ELBA”)
on images of one of the new 18F ligands (i.e.,
18F-Florbetapir). ELBA is designed to deliver
the whole-brain amyloid-burden estimation and a
ranking system to aid in the visual assessment.
Comparison to SUVr semi-quantification, clinical
evaluation at follow-up visits and cerebrospinal fluid
(CSF) analysis is provided to complement the method
validation.

MATERIALS AND METHODS

The ELBA method was developed on scans cur-
rently available in the ADNI database and acquired
with 18F-Florbetapir, which was chosen by ADNI to
be the reference radioligand in the evaluation of brain
amyloidosis [8].

The analysis procedure is automatic and does not
need any human supervision save for an optional
check after the spatial registration process, to ensure
that the processed image is consistent and has accept-
able characteristics.

In this study we first introduce the processing
steps to characterize a PET scan using two features
which are combined to give the ELBA score, next we
proceed with visual assessment in blind and open ses-
sions, finally we use the consensus visual assessment
to set a cut-off value for ELBA and SUVr measures,
and compare results.

PET scans and subject selection

We downloaded 18F-Florbetapir scans of 244
subjects from the ADNI archive in the most fully pro-
cessed format (series description in LONI Advanced
Search: AV45 Coreg, AVG, Std Img. and Vox Siz,
Uniform Resolution, subjects identification in Sup-
plementary Table 1). Subjects were selected to have
at least two scans (at baseline and after an approxi-
mately 2 years of follow-up), and 16 subjects came
with three scans for a total of ni = 504 PET images
(i.e., 228 subject with two scans and 16 subjects with
3 scans). The ensemble properties of these images are
shown in Table 1.

Subjects’ clinical evaluation was taken to be the
closest diagnosis to the baseline PET scan date.
Cohorts were grouped by the ADNI core clinical cri-
teria [9] as: normal subjects (NS, N = 70), early mild
cognitively impaired (EMCI, N = 86), mild cogni-
tively impaired (MCI, N = 26), late mild cognitively
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Table 1
Subjects and scanner ensemble statistics

Maker Model N. of scans N. of subj M/F Age

SIEMENS 1093 16 8 3/5 77.3 (8.0)
SIEMENS 1094 34 21 6/15 70.4 (6.7)
Siemens/CTI ACCEL 12 6 5/1 72.3 (7.7)
GEMS Advance 16 8 3/5 73.9 (4.3)
Philips Medical Systems Allegro Body(C) 4 4 3/1 74.0 (7.3)
SIEMENS Biograph20 mCT 1 1 1/0 72.0 (0.0)
SIEMENS Biograph64 5 5 2/3 73.5 (7.4)
GE MEDICAL SYSTEMS Discovery 600 4 2 1/1 71.5 (11.2)
GE MEDICAL SYSTEMS Discovery 710 2 2 0/2 68.2 (1.3)
GE MEDICAL SYSTEMS Discovery LS 19 11 7/4 71.2 (7.2)
GE MEDICAL SYSTEMS Discovery RX 8 4 2/2 71.5 (4.2)
GE MEDICAL SYSTEMS Discovery ST 32 23 14/9 75.1 (6.6)
GE MEDICAL SYSTEMS Discovery STE 74 43 31/12 72.6 (7.3)
Philips Medical Systems GEMINI TF Big Bore 6 5 4/1 75.2 (6.6)
Philips Medical Systems GEMINI TF TOF 16 25 12 5/7 71.5 (6.8)
Philips Medical Systems GEMINI TF TOF 64 14 9 5/4 72.7 (13.6)
Philips Medical Systems Guardian Body(C) 10 5 3/2 75.6 (5.1)
Siemens/CTI HR+ 103 54 26/28 72.9 (7.7)
Siemens ECAT HRRT 59 26 14/12 73.5 (8.6)
Philips Ingenuity TF PET/CT 3 3 2/1 70.6 (18.1)
CPS LSO PET/CT HI-REZ 45 24 11/13 70.2 (7.6)
Philips Medical Systems NULL 2 1 0/1 70.7 (0.0)
SIEMENS SOMATOM Definition AS mCT 10 10 5/5 75.1 (7.3)
– – 504 244† 128/116 72.6 (7.6)

†The number of subjects in the total is the number of unique subject identifiers. This is not the sum of the respective column because 38
subjects were scanned on a different system at baseline and follow-up.

impaired (LMCI, N = 51), and Alzheimer’s disease
(AD, N = 11).

Image processing

The intent of ELBA is to capture intensity distri-
bution patterns rather than actual counts in specific
ROIs. Considering the brain as a whole, we observed
that geometrical appearances of iso-intensity surfaces
are rather characteristic in typical negative and pos-
itive subjects, the latter showing a sparser and more
convoluted appearance than the former. In addition,
whole-brain intensity histograms appear to be skewed
toward higher intensities in positive subjects.

As qualitative interpretation, the PET signal clus-
ters onto the gray matter patches with significant
amyloid load, often surpassing the adjacent non-
specific white matter intensity. The presence of
higher intensity patches biases the counts statis-
tics and, when thresholded, gives a more complex
surface (with notches and several non-connected
components).

To capture and quantify these characteristics we
developed two features: one that gauges the iso-
intensity surface complexity and another that assess
the histogram propensity toward higher values. These
features are global properties of the whole brain

and do not require a reference ROI. An infographic
showing these steps is provided in Supplementary
Fig. 2.

Still, basic image processing consisting in a
spatial registration to MNI coordinates is per-
formed to allow the segmentation of the brain
from the head. This is necessary because non-
cortical regions like ventricles, cerebellum, and scalp
do not carry information specific to the amyloid
burden.

Reference PET
The reference PET (RP) is a mean image of

40 subjects acquired during the AVID-18 clinical
trial at one center (Fondazione Poliambulanza Isti-
tuto Ospedaliero Brescia, Italy) with 18F-Florbetapir
tracer and the following acquisition parameters:
injected dose = 370 MBq, acquisition time = 10 min
(50 min after the injection), image reconstruction on a
256 × 256 matrix with 4 iterations, 21 subset, Gaus-
sian filter with FWHM = 2 mm.

These subjects delivered a mix of negative and
positive scans (14 and 26, respectively), whose eval-
uation was visually confirmed by one of the expert
readers (UG). They were used to generate a spatial
reference only and were not included in the ELBA
score development.
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The mix of positive and negative subjects was only
used to provide a balanced template, with the aim to
provide an average image, sampled from a typical
population, which is used as registration target. In
this respect, the evaluation of the single reader needs
not to be confirmed, as it only serves to generate an
average, smoothed reference.

Generally speaking, the registration process
between same-modality images is more robust than
the cross-modality counterpart. The main benefit of a
RP therefore, was to relax the need of matching PET
scans directly onto the MNI-MRI template, either
directly or having the subject’s MRI as guide.

To generate the RP , the 40 scans underwent a
recursive registration process, each step delivering a
mean template. The first step consisted of an affine
registration onto the ICBM-152 MRI template using
a mutual-information metric. An intermediate PET
template was generated by averaging over the regis-
tered images. The intermediate template was used as
reference for another registration batch to generate a
second reference. The subsequent steps used an affine
plus a weak non-linear registration—that is a non-
linear warping using a large (12 mm) smooth operator
on the deformation field [10]—to improve on the ref-
erence image generation. The iterative process ended
after no more than 5 steps, when the generated refer-
ence did not show significant changes with respect to
the previous step.

The MNI-provided lobes, ventricles and sub-
cortical regions segmentations were mapped onto the
RP and visually inspected for consistency.

ADNI image processing
All downloaded scans (labeled with i, i = 1..n)

were spatially registered with an affine transforma-
tion onto the RP , delivering pi MNI-aligned images.
We then segmented the cortical surfaces (ci) and
ventricles regions (vi) from each pi by means of
non-linear mapping of the available pre-segmented
masks on the reference image RP : the RP was regis-
tered with a non-linear transformation onto the target
PET and the deformation field was applied to the
segmented masks.

We extracted the brain ROI bi considering all brain
lobes delimited by the cortical surface ci, neglecting
the cerebellum, the brain stem and the ventricles. A
sample of the image processing result is illustrated
in Supplementary Fig. 1. To reduce the processing
errors, longitudinal scans from the same subject were
treated as a batch from the beginning (i.e., sharing
registration parameters and masks).

Images were then measured with two methods:
intensity-based and geometry-based, each delivering
a characteristic feature.

Geometric feature
The selected brain volume bi is partitioned into

nL = 48 iso-intensity levels 0 < lj < 1, j = 1..nL

taken at equal quantile distances of the whole inten-
sity distribution (i.e., nL quantiles in the interval
[1 − 1/nL, nL]). The number of levels is of little con-
sequence provided it is chosen nL � 10 to ensure
adequate sampling of the distribution (we tested the
feature outcome with nL = 16, 24, 32, 48 levels).
Partitions consist of sj surfaces and Vj enveloped
volumes defined as

Vj = {
num. of voxels ∈ bi, voxel intensity ≥ lj

}

sj =
∑
∂Vj

1

where the ∂ symbol denotes the boundary, that is sj
counts the number of voxels on the perimeter. The sj
and the enveloped volumes Vj are not required to be
a connected set.

Each partition is characterized by two numbers:
one representing the radius rs

j of an equivalent sphere
having the same surface extent as sj , and another is
the radius rv

j of the equivalent sphere of volume Vj ,
that is

rs
j =

( sj

4π

) 1
2
, rv

j =
(

3Vj

4π

) 1
3

If we plot rv
j and rs

j for all j = 1..nL on a Carte-
sian plane we get a characteristic curve inferiorly
bounded by the bisector line rv = rs, which is the
limit for all sj being actual spheres. The characteris-
tic curve distances itself from the bisector line the
most when the sj is rough and notched. Because
of the peculiar spatial distribution of counts in the
brain, typical appearance of the characteristic curves
is rather different for amyloid-positive and negative
scans (Fig. 1).

When we subtract the trivial bisector line, typically
positive scans show a higher surface-to-volume ratio
on the higher intensity levels (low rv) with respect to
the lower intensity levels (high rv), and vice versa for
negative scans.

The characteristic curve is integrated without the
bisector area on the lower and higher half of its
domain D (i.e., the range of rv) to deliver the geo-
metric feature Gi:
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a b

Fig. 1. Plot a: iso-intensity partition illustration on an axial projection, related to three percentile values of the intensity counts within the
brain ROI (0.25, 0.50, and 0.75; red, yellow, and blue). Plot b: characteristic curve (rv,rs) for two typical cases: a low and a high amyloid
burden scan (thick curve/dotted curve, respectively). Values are normalized to the respective brain volume and boundary. The thin line is the
bisector.

Gi =
∫
D1

(rs(r) − r) dr∫
D2

(rs(r) − r) dr
,

D1 = [min(rv), rv/2], D2 = [rv/2, max(rv)]

Intensity feature
This feature gauges the intensity and contrast val-

ues in bi and divides them into clusters. The chosen
clustering method was kmeans [11, 12] with two
classes (High, Low). Since kmeans uses an itera-
tive algorithm starting form a random sample, to
ensure reproducibility we run it for 10 repetitions,
then choosing the one with minimum within-cluster
sums of point-to-centroid distances.

In each class, we computed the number of ele-
ments KHigh and KLow and the class median intensity
value IHigh, ILow. We conventionally linearly scale
the intensity histogram so that the values correspond-
ing to the 1% and the 99% percentiles are mapped
onto the [0, 1] interval. We then defined the intensity
feature Ci as

Ci = ln

(
KHigh

KLow

ILow

IHigh

)

The intensity feature modulates the relative num-
ber of elements in the classes with their contrast.
As in the geometric feature, this latter formulation
is expressed as a ratio too, so that both features are
internally (intra-subject) normalized.

ELBA score

The two image features Gi and Ci were plotted
on a Cartesian plane and used to fit a quadratic
polynomial. Each point can be projected onto the
curve to get two new coordinates: a curvilinear
abscissa xc (arc length) and a curvilinear ordinate yc

(see Fig. 2).
The ELBA score is simply xc after a linear scaling

and a shift to conveniently place the origin at the
cut-off between negative and positive scans.

Up to this point, the construction of the ELBA
score did not require any indication on the subject
amyloid burden, or provide any hint about its age or
clinical status. It was merely a way to combine infor-
mation on the geometrical distribution of PET counts
in the brain and information on the contrast between
the brightest and darkest intensity components.

Alternative implementations

There can be equivalent implementations of the
ELBA score which can replace the formulas listed
above. For instance, any formulation which differen-
tiates highly notched versus smoother surfaces can
be used in place of the geometric feature. Similarly,
intensity bias in a scan histogram can be equivalently
assessed by the following ratio

Ib = < I > −q1

q2− < I >
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Fig. 2. ELBA scatter plot (intensity feature C versus geomet-
ric feature G). The black line is the quadratic model. For each
scan (dots) the blue part of the line represents the curvilinear
abscissaxc (arc length), and the perpendicular line is the curvilinear
ordinate yc.

where < I > is the mean intensity and q1 and q2 are
the 1% and the 99% intensity percentiles.

Even the use of the curvilinear abscissa described
above is not mandatory and an alternative score E′
can be formulated with a simple geometric mean2 as

E′ =
√

G · C

In addition, given the apparent high correlation
between the two features G and C (Fig. 2), one might
also be tempted to use one feature only rather than a
combination of the two.

As example of possible different implementations,
we show in Supplementary Fig. 7 the performance
comparison among the ELBA score, the geomet-
ric and intensity features alone, and the alternative
score E′.

The analysis shows the equivalence of the curvi-
linear abscissa versus the geometric mean approach,
whereas the single feature comparison seems to
favor the intensity feature C. For the sake of
robustness, we kept both features in the ELBA
score.

2The geometric mean is often used when comparing different
items to find a single “figure of merit” when each item can span
different numeric ranges.

VALIDATION

All PET images were evaluated by five indepen-
dent readers: two nuclear medicine (NM) physicians
and one neurologist who have been trained to give
teaching courses to NM physicians and read more
than 200 scans with supervision (expert readers) and
two moderately expert readers (NM physician) who
read more than 200 images under supervision.

Upon coarse data examination, the readers noticed
an apparent quality difference among scans. They
agreed therefore on an operational definition of
“sub-optimal image quality” for the purpose of keep-
ing track of quality-induced mis-readings during the
validation. They considered a subjective evaluation of
low quality reconstruction, motion artefacts, or low
signal-to-noise ratio according to each own clinical
experience. The aim was to tag scans whose char-
acteristics could interfere in (or impair) the visual
assessment.

Regardless of the their quality, all scans were pro-
cessed and visually evaluated. The quality label was
used for retrospective analyses only, to keep track of
possible grounds for difficult cases.

The 504 images were divided into 488 among
baseline and first follow-up scans, plus 16 second
follow-up scans. For the validation purpose we used
the 488 baseline and follow-up images, while the
additional 16 scans only were used in the longitudinal
evaluation (described below).

Baseline and follow-up scans were read as inde-
pendent images, all mixed together with random
order so that evaluators were very unlikely to see the
same subject twice during the reading sessions.

Blind phase

Images were presented after the preprocessing
steps described above in “Image processing”. The
blind evaluation was carried out by each reader with-
out interaction, without support from any automatic
analysis software, blind to the clinical data, blind to
the ELBA output and according to each reader’s own
practice and experience.

Readers were initially allowed to judge on a three
classes base: negative, positive, and uncertain. Read-
ers were asked to use negative and positive tags on
images where they were absolutely confident of the
visual assessment. Scans whose evaluation implied
a more elaborated visual inspection and where the
possibility of doubt existed should have been ini-
tially tagged as uncertain. In addition, readers were
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also asked to add a tag on the perceived image
quality.

Besides the individual evaluations, the analysis of
the blind phase delivered 4 image set: the P set and the
N set, that is scans which were consistently marked
as positive and negative by all readers; the U set, that
is scans which received an uncertain comment from
at least one reader; and the C set, that contains those
scans which received contrasting judgment (positive
and negative together from one or more readers).

More specifically, the U set consists of scans with
at least one uncertain comment but otherwise no con-
trasting labels, whereas the C set consists of scans
which received contrasting evaluations but which
may also have had one or more uncertain comment.

Open phase

In this phase, all scans in the U and C set were
presented again. Each scan was evaluated by all five
readers in an open session, with interaction, where
they were invited to reach a consensus on either
negative or positive label.

This time though the ELBA output was partially
used to aid in the analysis. Readers were not made
aware of the ELBA score but the image to evalu-
ate was shown side-by-side with two other images,
ordered on the ELBA score scale: the nearest one
from the P set and the nearest one from the N set
(see Fig. 3b for an example). This visualization was
meant to help in the assessment, by comparing the
scan under scrutiny to the most similar, validated
assets.

The original scans (i.e., not spatially normalized)
were also available for consultation. They were used
to cross-check the consensus evaluation during the
open discussion.

Comparison with SUVr-based methods

We calculated the average cortico-cerebellar SUVr
on all scans, to compare the ELBA score to this widely
used semi-quantification method. We used a data-
driven approach with the whole cerebellum (white
and gray matter) as reference and a number of cor-
tical ROIs as uptake regions, as displayed in Fig. 4.
The SUVr information was used neither in the blind
nor in open validation phase.

The cortical regions were: medial frontal gyrus,
lateral frontal cortex (middle frontal gyrus), lateral
temporal cortex (middle temporal gyrus), lateral pari-
etal cortex (inferior parietal lobule), insula, caudate

nucleus, and precuneus-posterior cingulate region.
They were obtained by a data-driven approach similar
to the one described in [13].

Briefly, we took 50 negative and 50 positive sub-
jects from the N and P set (i.e., those subjects tagged
negative and positive independently by all readers).
Each image was spatially normalized into MNI space
and intensity normalized by the mean counts in the
whole cerebellum. Then a positive and negative mean
image was generated. The negative mean was sub-
tracted from the positive one, the result was left-right
symmetrized and smoothed with a 3D-Gaussian fil-
ter (σ = 3 mm). We found an optimal threshold by
maximization of the area under the ROC curve of the
SUVr between the 50 positive and 50 negative scans.

SUVr measures were provided by ADNI too, but
only on a fraction of the baseline PET scans (111).
The ADNI-provided values are calculated according
to protocols described in [8], and they are the average
cortical-cerebellar SUVr computed with two meth-
ods: one with the syngo PET Amyloid Plaque (sPAP)
software and another with the Avid Semi-Automated
Method (AVID [14]). We checked that SUVr values
computed with the data-driven approach agreed with
those already provided on the subset of baseline scans
using correlation and linear regression analysis.

The final SUVr cut-off was chosen to maximize
accuracy using the consensus negative/positive labels
after the open phase session.

Comparison with CSF Aβ42 quantification

CSF was acquired by lumbar puncture following
procedures and criteria identified by ADNI (analysis
details and quality control procedures are available
at http://adni.loni.usc.edu/). The biomarker data set
used in this study were taken from the file series
upennbiomk4.csv to upennbiomk8.csv. We consid-
ered CSF and PET data whose measurements were
closest in time, restricting to lumbar punctures and
PET measurements performed within 100 days of
each other, which resulted in a selection of 203
subjects.

The cut-off on CSF Aβ42 values was 174 ng/L
(from [15]), a value Mattsson et al. found to be
optimal to maximize accuracy between stable and
progressive MCI.

We compared CSF with ELBA and SUVr scores
and with visual assessment. We also evaluated the
diagnostic performance for NS versus AD (57 versus
51 subjects, respectively), where clinical assessment
was taken at the latest possible follow-up visit.

http://adni.loni.usc.edu/
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a

b

Fig. 3. Plot a: zoom on the geometric (G) and intensity feature (C) plane around a new scan to be evaluated (blue diamond). The scan is
compared to the nearest tagged cases taken from the N and P set only, i.e., scans with concordant independent evaluation by all readers given
in the blind session. The distance is evaluated on the ELBA plane, where the nearest positive and negative scans are indicated by the blue
line. A trans-axial representation of the three scans is shown in plot b as sample of the additional information used in the open phase session.

Longitudinal evaluation

We computed the annualized score change (ASC)
using follow-up scans. For the 228 subjects with a
baseline and a follow-up scan we used the formula

ASC = sf − sb

tf − tb

where f and b label the follow-up and baseline score
and subject’s age. For the 16 subjects with two follow-
up we computed the least square linear regression

s + ε = mt + b

of the score s versus time t (b is the intercept and ε

the residuals) and the ASC is simply

ASC = m

To compare the numbers with other indexes (such
as those computed with SUVr quantification), we
considered the normalized quantity

δ = ASC

iqr(s)
× 100

where the interquartile range (iqr) of the score s is
used as normalization factor to estimate the relative
score change over the observed population variability.

Using the 16 subjects with three scans each,
we attempted to estimate the analysis stability and
robustness. With the present data we could not evalu-
ate a test/retest paradigm on the same subject (i.e.,
two repeated scans with subject reposition) so we
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Fig. 4. Uptake regions for the computation of SUVr values superimposed on the reference PET. The counts normalization region (not shown
here) is the whole cerebellum.

used the residuals ε on the linear regression of the
score versus time as a proxy. This works under
the hypothesis that the amyloid burden piles up
slowly and linearly at least within the follow-up
time (approx. 4 years)—an assumption that agrees
with the accepted neuropathological models—and
assuming that the technical errors on repeated
scans are independent from the subject’s amyloid
burden.

Deviation from the linear behavior is then used
as a surrogate to the test/retest error and treated as
analysis uncertainty (due to protocol, image acqui-
sition, reconstruction and processing) and used to
estimate the error on the single examination. It can be
thus compared to literature works on the various Aβ

ligands [16–19], which show an average test/retest
relative error using the global SUVr measurement in
the range 3% − 7%.

Obviously, the measured uncertainty would not
be due to the feature processing only, but also to
the different acquisition conditions, scanners, and
reconstruction parameters. For instance, we remark
that among the 16 subjects with three scans, 11
were acquired on a single scanner on baseline and

follow-ups, and 5 subjects were acquired with two
different scanners at some follow-up.

Finally, we selected a subset of subjects with either
negative or borderline ELBA score (i.e., ELBA <0.5)
which were also evaluated by CSF analysis. These
subjects were divided into three groups, of pro-
gressively lower average Aβ42 concentration (ng/L):
group A, Aβ42 > 230; group B, 174 < Aβ42 < 230;
group C, Aβ42 < 174.

These three groups contained an approximately
equal number of subjects (52, 48, and 34, respec-
tively) where the above-cutoff ensemble was divided
into A and B to better reflect the possible trend in
longitudinal behavior with respect to CSF outcome.
An analysis of variance was applied to check for
significant differences among groups.

Clinical follow-up

The latest clinical evaluation was checked and
compared to the initial assessment. We found 78
subjects who had their assessment reviewed from
baseline (latest clinical data sheet downloaded on
May 10, 2016). The average time to conversion
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Fig. 5. Visual evaluation versus the ELBA score (or equivalently the curvilinear abscissa) before and after the blind phase session; negative,
positive, and uncertain labels are given by each reader (AC, FN, IB, SM, and UP). In the blind session summary (‘Blind’), P and N refers to
scans consistently (i.e., by all readers) tagged positive and negative, respectively. U refers to scans which received at least one uncertain tag
but no contrasting assessment; C refers to scans which received contrasting assessment (even when together with uncertain tags). The open
session summary (‘Open’) shows the dichotomic consensus. Circles are centered on the median value of the respective cohort and their areas
are proportional to the sample size. The vertical line marks the cut-off. Thick lines mark the 25% and 75% percentile, thin lines extends up
to 1.5 times the interquartile range.

was 35 ± 10 months (mean and standard devia-
tion). They were divided into 4 classes according to
the baseline/follow-up assessment: MCI→AD (46),
MCI→NS (16), NS→MCI (10), and NS→AD (6).

Their ELBA and SUVr scores at baseline
were used to measure consistency between semi-
quantification methods and the agreement with the
diagnosis at baseline and follow-up. When present,
CSF Aβ42 level was used to help discussing border-
line cases and evaluate diagnosis agreement with the
biomarkers.

Further methodological considerations

We checked for dependency on tracer doses admin-
istered, scan start time after the injection, and
white matter integrity as possible factors which

might influence the intensity mapping. Data set con-
taining scan information were downloaded from
ADNI (files av45meta.csv, ucd adni1 wmh.csv and
ucd adni2 wmh.csv, additional analysis details are
available at http://adni.loni.usc.edu/). These addi-
tional data were available for 242 scans.

All parameters were linearly regressed against the
ELBA score, showing no significant trend (95% CL
on the line slope include the zero). A visual repre-
sentation of this analysis is found in Supplementary
Fig. 6.

In addition, we estimated the generalized accu-
racy, sensitivity, and specificity of ELBA and SUVr
scores versus the visual assessment (open phase) by
means of an iterative procedure. Briefly, we randomly
selected 50% of the PET datasets as the training
group (for the coefficient estimation for SUVr and

http://adni.loni.usc.edu/
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Fig. 6. Mean (baseline and follow-up) ELBA score distribution
versus clinical cohort. Dots (subjects) are shown with the median
(red line), the 95% conf. level on the median (yellow band) and
the interquartile range (azure band). In each cohort, the leftmost
[rightmost] dots represents age class <70 [>70] years old. NS,
cognitively normal subjects; EMCI/LMCI/MCI, early- / late- / mild
cognitive impairment; AD, Alzheimer’s disease.

ELBA) and 50% of the PET datasets as the test-
ing group (for the cross-validation of the estimated
coefficients). Each group contained approximately an
equal number of positive and negative scans, based
on the concordant judgment of the experts (i.e., after
the open session). Cut-off values for SUVr and ELBA
scores were computed on the training group (maxi-
mizing accuracy) and applied to the testing group.
The procedure was iterated 500 times.

RESULTS

Blind and open phase performance

The score distribution was grouped by visual
assessment and results are displayed in Fig. 5, where
we show the single reader evaluation and the com-
bined set after the blind and the open sessions. An
equivalent plot using the curvilinear ordinate yc is
provided in Supplementary Fig. 4.

Of the 488 scans, 186 were consistently marked as
positive by all readers (P set), 217 marked as negative
(N set), 63 received an uncertain comment from at
least one reader (U set), and 22 received contrasting
judgment (positive and negative together, C set). The
agreement among the readers after the blind session

was measured by the intraclass correlation coefficient
(ICC) and was found to be ICC=0.94, (p < 10−4).

Scans labeled uncertain were rather consistent
both in number—59, 45, 49, 42, and 48 for AC, IB,
UG, SM, and FN, respectively—and ELBA score.
Moreover, all readers consistently tagged 34 scans
as uncertain. Not surprisingly, 45 out of 63 (71%) of
all uncertain scans were also flagged as “sub-optimal
quality” by at least one reader.

To define the cut-off value on the score, we used the
open phase results. The cut-off was chosen to max-
imize accuracy and the original curvilinear abscissa
(xc) was scaled and shifted to have cut-off = 0 and
the mean score on the negative scans = –1 (lower x-
axis in Fig. 5). The linear scaling is not a necessary
step per se; it is applied only to facilitate the score
interpretation.

The discriminating power was measured by the
area under the receiver operating characteristic curve
(AUC), giving AUC = 1.000 for N versus P in blind
condition (i.e., on the scans on which all readers inde-
pendently concurred), and AUC = 0.997 [0.993 –
0.999] for negative versus positive (accuracy = 0.97)
after the open phase discussion (CL = 0.95 within
brackets).

We also show the distribution of the score grouped
by clinical cohorts in Fig. 6; 244 subjects are plotted,
grouped by their clinical classification at baseline.
The values on the y axis are the average between the
baseline and the follow-up ELBA scores. To enhance
the reading, subjects in Fig. 6 are also grouped by
age: for each cohort, the leftmost and rightmost dots
represents subjects of age <70 and >70 years, respec-
tively.

Comparison with SUVr-based methods

Fig. 7 and Table 3 present semi-quantification
values and binary summary separately for the dif-
ferent diagnosis groups, using the visual assessment
after the blind session. Fig. 8 shows the comprehen-
sive ELBA score versus SUVr semi-quantification on
all scans labeled according to the visual evaluation
after the open phase session; the confusion matrix
is provided in Table 2a and b. In these figures and
tables, the optimal SUVr cut-off is 1.23 and it was
computed maximizing the accuracy using the open
session results, in the same way as with the ELBA
score.

The SUVr AUC = 0.978 [0.964 – 0.985] (accuracy
= 0.94). The Pearson correlation between ELBA and
SUVr scores is r = 0.86 (p < 10−4).



1448 A. Chincarini et al. / Independent Evaluation of Brain Amyloidosis
a

b
c

d
e

Fi
g.

7.
E

L
B

A
sc

or
e

/
SU

V
r

va
lu

es
ve

rs
us

vi
su

al
as

se
ss

m
en

t
af

te
r

th
e

bl
in

d
se

ss
io

n,
gr

ou
pe

d
by

ba
se

lin
e

cl
in

ic
al

ev
al

ua
tio

n.
P

an
d

N
re

fe
rs

to
sc

an
s

co
ns

is
te

nt
ly

ta
gg

ed
po

si
ti

ve
an

d
ne

ga
ti

ve
,

re
sp

ec
tiv

el
y.

U
re

fe
rs

to
sc

an
s

w
hi

ch
re

ce
iv

ed
at

le
as

to
ne

un
ce

rt
ai

n
ta

g
bu

tn
o

co
nt

ra
st

in
g

as
se

ss
m

en
t;

C
re

fe
rs

to
sc

an
s

w
hi

ch
re

ce
iv

ed
co

nt
ra

st
in

g
as

se
ss

m
en

t.
N

S,
co

gn
iti

ve
ly

no
rm

al
su

bj
ec

ts
;

E
M

C
I/

L
M

C
I/

M
C

I,
ea

rl
y-

/l
at

e-
/m

ild
co

gn
iti

ve
im

pa
ir

m
en

t;
A

D
,A

lz
he

im
er

’s
di

se
as

e.



A. Chincarini et al. / Independent Evaluation of Brain Amyloidosis 1449

Table 2
Confusion matrices for ELBA and SUVr scores alone (a), and compared to the visual assessment (b)

a) Confusion matrix (ELBA score/SUVr)

N = 488 ELBA
positive negative

SUVr positive 190 25
negative 13 260

b) Confusion matrix versus visual assessment (open session)

SUVr ELBA Visual assessment
positive negative

positive positive 189 1
positive negative 7 18
negative positive 7 6
negative negative 1 259

We matched our SUVr computation on 111 base-
line scans which were provided with independent
SUVr values by ADNI (sPAP and AVID meth-
ods). Pearson correlation is: r = 0.98 (p < 10−4)
this work versus sPAP; r = 0.99 (p < 10−4) this
work versus AVID. The least square line y = ax +
b between our SUVr and the AVID one has a
slope [CL=0.95] a = 0.90 [0.87, 0.92] and inter-
cept b = 0.07 [0.03, 0.10] which translates in an
equivalent optimized cut-off = 1.18 on the AVID
values.

Using the cross-validation procedure to estab-
lish cut-off values and estimate the generalized
performance, we found that the combined accu-
racy, sensitivity, and specificity for ELBA are
0.96, 0.97, and 0.95, respectively. Similarly, SUVr
results are: 0.95, 0.96, and 0.93. The ELBA cut-off
range was found within the interval [–0.14 – 0.18]
(95% CL).

Comparison with CSF Aβ42

The scatterplot between baseline ELBA score and
CSF Aβ42 concentration is provided in Fig. 9, where
the open-phase visual assessment was used to group
data.

Concordance between ELBA score and Aβ42 score
classification was achieved in 184 out of 203 (90.6%)
instances; in 7.5% of patients an altered Aβ42 score
was found with normal ELBA score and, on oppo-
site, 1.5% of patients had a (slightly) increased ELBA
score with normal Aβ42 levels.

The related SUVr representation is in Supplemen-
tary Fig. 9. The confusion matrix for CSF versus
visual assessment (open phase), ELBA and SUVr
scores is provided in Table 4, where the accuracy is
found to be 0.90, 0.91, and 0.89, respectively.

The number of subjects with confirmed NS and
AD clinical status at follow-up and with CSF analy-
sis is 108. The area under the ROC curve (auc, CL
= 0.95) for NS (57) versus AD (51) is found to be
auc = 0.88 [0.78 − 0.95] (CSF), auc = 0.96 [0.90 −
0.98] (ELBA) and auc= 0.92 [0.84 − 0.97] (SUVr).
A graphical representation is in Supplementary
Fig. 10.

Clinical follow-up

Fig. 10a shows the scores for those subjects
whose clinical evaluation changed over time. The
agreement between ELBA and SUVr dichotomized
scores is 97.4%. Most MCI→AD (89%) do fall
into the SUVr positive/ELBA positive quadrant, as
well as most MCI→NS (87.5%) fall into the SUVr
negative/ELBA negative quadrant.

When considering CSF Aβ42 values, which were
available for 63 out of 78 converters, the agree-
ment with ELBA was slightly better than with SUVr
(93.7% versus 90.5%, Figs. 10b and c).

Very limited discrepancies with the clinical evalua-
tion are apparent. For instance, there are two subjects
(1 MCI→AD and 1 NS→AD) who exhibit con-
sistently negative markers (ELBA, SUVr, and CSF)
despite their final clinical assessment, while another
NS→AD is borderline negative for CSF and ELBA
and borderline positive for SUVr.

Longitudinal evaluation

Longitudinal analysis on the subjects with a base-
line and one follow-up scans showed rather scattered
values, although a pattern could be clearly discerned.
Fig. 11 shows the distribution of δ versus the average
ELBA score together with a 2nd-order polynomial
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Table 3
Binary semi-quantification versus visual assessment and clinical evaluation

ELBA/SUVr Visual assess. Baseline clinical eval.
quadrant (blind) NS EMCI MCI LMCI AD Scan tot.

N 81 71 21 31 4 208
–/– P 0 0 0 0 0 0

U 20 18 3 6 0 47
C 3 2 0 0 0 5
N 4 5 0 0 0 9

–/+ P 1 2 0 1 0 4
U 2 4 1 1 0 8
C 2 2 0 0 0 4
N 0 0 0 0 0 0

+/– P 3 1 0 2 0 6
U 1 2 0 0 0 3
C 0 4 0 0 0 4
N 0 0 0 0 0 0

+/+ P 19 57 25 57 18 176
U 2 0 1 2 0 5
C 2 4 1 2 0 9

Scan tot. 140 172 52 102 22 488

Classification summary of all scans using the visual assessment after the blind session (see Fig. 7). P and N refers to scans consistently
(i.e., by all readers) tagged positive and negative respectively. U refers to scans which received at least one uncertain tag but no contrasting
assessment; C refers to scans which received contrasting assessment (even when together with uncertain tags). NS, cognitively normal
subjects; EMCI/LMCI/MCI, early- / late- / mild cognitive impairment; AD, Alzheimer’s disease. Value represent the number of scans in
each class.

Fig. 8. ELBA and SUVr scores scatter plot for all scans. ‘n’ and ‘p’
tag the consensus evaluation after the open phase session. Dotted
lines mark the cut-off values.

model, used to fit the data. The interquartile value
used for normalization of the ASC is iqr(s) = 1.89.
An equivalent graph using SUVr values is reported
in Supplementary Fig. 5.

Subjects with two follow-up scans are also plot-
ted on the same graph. Cohortwise, these subjects
belonged to NS (5), EMCI (2), and MCI (9).

Fig. 9. CSF Aβ42 level versus baseline ELBA score. Markers
are grouped by binarized ELBA score being either concordant
or discordant with the consensual visual evaluation (open phase).
Cut-offs are marked with thin dotted lines.

Using these latter 16 subjects, we computed the
residuals ε from the linear fit, to be used as
proxy of the test/retest error. The standard devia-
tion of the residuals is approximately σ = 0.084,
which amounts to an estimated relative error σr =
σ/iqr(s) = 4.4% (σr = 2.3% if we normalize on the
95% percentile of the score range). The equivalent
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Table 4
Confusion matrix for CSF Aβ42 concentration versus the consen-

sus visual assessment (a), ELBA (b) and SUVr scores (c)

N = 203 Visual evaluation
a) negative positive

Aβ42 [ng/L] >174 100 3
<174 18 82

N = 203 ELBA score
b) <0 >0

Aβ42 [ng/L] >174 100 3
<174 16 84

N = 203 SUVr score
c) <1.23 >1.23

Aβ42 [ng/L] >174 96 7
<174 15 85

SUVr values are σSUVr = 0.023 and σr = σSUVr/

iqr(SUVr) = 4.6%
We computed also the relative annualized score

change δ grouped by cohorts. Reported values
(expressed in %/year) are the median and its confi-
dence interval (at CL = 95%): δ = 4.6 [3.1, 6.1] (NS),
δ = 8.1 [6.6, 9.6] (EMCI), δ = 3.4 [0.6, 6.2] (MCI),
δ = 6.0 [3.9, 8.2] (LMCI), δ = 5.6 [−0.7, 11.9]
(AD). A t-test found the values to be significantly
different between EMCI and NS cohorts (p = 0.02)
and between EMCI and MCI cohorts (p = 0.02).

Finally, we analyzed the ELBA ASC against the
CSF Aβ42 concentration (Fig. 12 and Supplementary
Fig. 8 for SUVr ASC) for 134 subjects with nega-
tive or borderline ELBA score (<0.5). The Pearson
correlation between the two quantities is small but
significant (r = −0.30, p = 0.0004). The grouping
by CSF intervals allows to see a trend beyond the
noisy ASC data. From the highest mean Aβ42 con-
centrations to the lowest, the ASC ranges from group
A = 0.07 [0.03 – 0.10] to group B = 0.14 [0.11 –
0.17], to group C = 0.20 [0.14 – 0.27] (mean and
95% CL on the mean). The analysis of variance indi-
cates that group A and C, as well as group B and C
are significantly different (p < 10−4 and p = 0.02,
respectively). The corresponding analysis on SUVr
ASC gives: group A = 0.005 [–0.00 – 0.01], group
B = 0.01 [0.00 – 0.02], and group C = 0.03 [0.01 –
0.04]. The between-groups comparison is p = 0.001
(A versus C), and p = 0.03 (B versus C).

DISCUSSION

The proposed analysis shows that it is feasi-
ble to construct a semi-quantification method on
amyloid-PET images without relying on counts-ratio
approaches. The ELBA method shows good perfor-

mance versus the dichotomic visual assessment and
has ranking characteristics, proven both on cohort-
based and longitudinal analyses.

From a methodological point of view, both SUVr-
based and ELBA approaches require image regis-
tration techniques (spatial normalization), although
the lack of small cortical ROIs in ELBA renders
the registration process and the template choice less
demanding. ELBA tries to mimic the human visual
process, in that it captures information on global con-
trast and intensity distribution rather than weighing
intensity in predefined regions. While further tests
are necessary, particularly on all other major PET
tracers and with histologically validated scans, it
is worth noting that this process delivers compara-
ble (if not slightly better) information in terms of
semi-quantification, classification, and ranking, with
respect of the widely used SUVr methods.

Blind and open phase performance

Expert readers were concordant and confident in
reaching a diagnosis (positive or negative) on 403
scans (82.6%), without the influence of clinical infor-
mation and other imaging data. This finding confirms
that a trained reader can safely rely on his/her expe-
rience on over 80% of images, when evaluating by
means of visual analysis.

As a second point, the five expert readers were
not able to give a concordant diagnosis (i.e., amy-
loidosis present/absent) in 22 (4.5%) images and
in 63 (12.9%) more images at least some of them
declared that the initial assessment was unclear (i.e.,
doubtful). Interestingly, uncertain-tagged scans were
mostly located in the negative domain whereas con-
flicting scans were evenly placed around the cut-off.
As a consequence, looking at the fraction of uncertain
and contrasting labels versus clinical cohort (blind
session, Table 3), we find that for cognitively normal
subjects and EMCI it is 23% and 21%, respectively,
versus a 11% found in MCI and LMCI (AD has 0%).

Overall, these 85 (17.4%) scans may represent the
borderline scans where a quantification approach can
help in reaching a definite diagnosis. This fraction of
scans is polled from 61 subjects and could derive both
from healthy subjects or mainly early MCI patients in
a stage when Aβ is accumulating in the brain but still
in a limited amount [20, 21], thus leading to difficult
reading. In facts, they belonged to NS (22), EMCI
(27), MCI (4), and LMCI (8).

When the experts were aided by the closest neg-
ative and positive images, as yielded by the ELBA
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output, the 22 conflicting cases and 63 uncertain were
solved, which is a non-trivial aid this automatic sys-
tem can provide even to expert readers. We have not
tested the potential aid ELBA can give to less expe-
rienced readers but it should be intuitively higher.

A substantial number (about 19%) of healthy sub-
jects had a positive score, although the positivity
fraction is mainly ascribed to the elderly (>70 years)
ones, on a par with literature findings. Also, a few
patients with AD had a normal score, which is
in keeping with the literature [22] and raising the
possibility of wrong clinical diagnosis (ADNI sub-
jects do not have pathological confirmation), patients
with discrepant normal amyloid-PET scan but abnor-
mal Aβ1−42 levels in CSF [23] or, alternatively, of
patients with suspected non-Alzheimer pathology
(SNAP [24]).

In the middle, MCI subjects in progressive
stages of cognitive impairment were roughly halved
between positive and negative scans, which high-
lights the presence of causes of MCI (such as
frontotemporal lobar degeneration or vascular cog-
nitive impairment) other than AD, and possibly of
SNAP. Ranking based on the overall amyloid burden
is also apparent and it is a benefit of the method, as
the average ELBA score progressively increases from
healthy subjects to patients with AD.

Comparison with SUVr-based methods

The performances of both approaches are very sim-
ilar, with a modest but statistically significant edge in
favor of ELBA. The optimized SUVr cut-off (=1.23
and based on the visual assessment) is higher than the
values typically considered in literature for this lig-
and (1.10 - 1.14, [14, 22, 25]) but it agrees with other
works (e.g., [15]), where their cut-off value (1.24)
was obtained by AUC optimization.

Tables 2b and 3 summarizes the binary classifica-
tion (ELBA and SUVr) versus the visual assessment
in both blind and open session. The comparison
to cortico-cerebellar SUVr in the cases where both
methods agree shows that SUVr values are not alone
in providing good classification relative to visual
assessment, and that and alternative and independent
approaches can enrich the information obtainable
from the PET scan.

Although the ensemble on which the two meth-
ods disagree is limited to a small number of subjects
(quadrants for which ELBA/SUVr are pos/neg and
neg/pos), the apparent trend is that subjects negative
to the visual assessment are likely to be considered

negative by ELBA (although not far from its cut-off)
but are considered positive for SUVr. This suggests
that whole-brain amyloid burden evaluation is more
concordant with respect to a visual read than (small)
ROI-based quantification on borderline cases. When
keeping the blind visual assessment as reference (that
is using only the N and P set, Table 3) this distinction
is even more pronounced: 15 out of 19 cases agree
with ELBA versus 4 out of 19 for SUVr.

Comparison with CSF Aβ42

The comparison between ELBA score and CSF
Aβ42 assay yielded a satisfactory agreement with
90.6% concordance, in the same range [26] or even
a bit higher [23, 27] than those achieved in previ-
ous works using the SUVr approach. Discrepancies
(7.5%) were mostly found in patients with abnormal
Aβ42 levels and a normal ELBA score. Such a lim-
ited discrepancy may be explained with the notion
that decreased Aβ42 reduction in CSF can precede
brain amyloid deposition [28].

Clinical follow-up

Results shown in Fig. 10 suggest a cautionary
attitude when using clinical evaluation (even at
follow-up visits) as gold standard. For instance, the
lack of amyloid markers, as evidenced by both CSF
and PET analysis, is virtually incompatible with the
diagnosis/conversion to AD. It has recently been
shown that a small but non-trivial part of AD patients
of the ADNI population shares a negative Florbe-
tapir scan [26]. These Florbetapir negative patients
would have a variety of clinical and neurodegen-
eration biomarker features distinct from Florbetapir
positive patients, suggesting that one or more non-
AD etiologies—such as cerebrovascular disease and
SNAP—may be the main cause of their cognitive
deficit, mimicking AD.

On the other hand, MCI who reverted to NS
condition may still have a negative or borderline
amyloid PET burden; among them an occasional
patient may show abnormally low levels of CSF
Aβ42 and might theoretically become Florbetapir
positive in the future due to the earlier CSF
positivity [28].

Longitudinal evaluation

The fitted model is qualitatively comparable to that
shown by [20] albeit using a much shorter observation
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a b

c

Fig. 10. Baseline CSF Aβ42, ELBA, and SUVr scores grouped by clinical evaluation (baseline→follow-up) for subjects whose initial
assessment changed at some later visit. Cut-offs are marked with dotted lines. In plot (a) the number of subjects is 78. In plot (b) and (c),
the number of subjects is 63 out of 78, that are those for which CSF data were available too. NS, cognitively normal subjects; MCI, mild
cognitive impairment; AD, Alzheimer’s disease.

time (24 months), with a different ligand and on
a larger pool of PET scanners. The shorter follow-
up time could also explain why our findings on the
SUVr longitudinal analysis exhibit a larger variabil-
ity than that shown by [20]. The ASC shows a rather
sparse distribution when computed on two scans only
(with a wide range of positive and negative values),
a behavior which is reduced in the 3 scans analy-
sis. In all the 16 subjects with at least three repeated
scans the ELBA score increased, showing the sensi-
tivity of the method to amyloid deposition even in

a relatively short time span (48 months) and open-
ing potential applications to pharmacological studies
with anti-amyloid compounds.

Even taking into account the relatively strong
uncertainty due to the use of only two scans, ASC
values peaked in the EMCI cohort, are mildly positive
within normal subjects and are substantially compat-
ible with zero in AD, a behavior which is expected
according to the latest models of amyloid load [21].

The comparison between ELBA ASC and CSF
Aβ42 points to a discrete, inverse relation between
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Fig. 11. Relative (δ, interquartile-range normalized) and absolute
annualized score change (ASC) for ELBA versus baseline score. A
quadratic model and the CL band on the model are superimposed.
Subjects with three scans (triangles) are marked separately from
subjects with only two scans (dots).

Fig. 12. CSF Aβ42 versus ELBA annualized score change (ASC)
for 134 subjects whose baseline ELBA score was <0.5 (i.e., neg-
ative or borderline according to ELBA). Subjects are divided by
CSF range (ng/L) into three groups: A (230 < Aβ42), B (174 <

Aβ42 < 230), and C (Aβ42 < 174). The corresponding ensemble
statistics is summarized in the boxplot, where the box length spans
the 25% to the 75% ASC percentile, the white dot and the white
triangles are the mean and the 95% CL on the mean, respectively.
Groups A/C and B/C are significantly different.

CSF Aβ42 level and variations in brain amyloid load,
taking into account that they reflect indirect measures
of a biologically complex phenomenon.

According to our results which focused on patients
with a negative or borderline positive ELBA score
at baseline, brain amyloid accumulation appears to
be faster in those with a pathological low CSF Aβ42
levels, in line with current knowledge.

The relatively high scattering of ASC value of both
ELBA and SUVr scores tells us that we are still
rather far from being able to use differential mea-
sures at the single subject level. This limitation alone
should sponsor new methodological approaches to
semi-quantification on amyloid-PET images.

Compared to longitudinal SUVr values though,
ELBA shows lesser variability. This is likely due
to the fact that reference (and uptake) region is not
needed, the selection of which has recently been
shown to impair the reproducibility and accuracy of
longitudinal SUVr measurements [29].

In addition, the average ASC values found in our
work are comparable to those proposed by [21] using
SUVr measurements, suggesting that the important
clinical and pharmacological implications of an accu-
rate longitudinal evaluation at the cohort level are
within our reach, particularly if the protocol involves
three or more PET scans.

Image quality issues

A non-negligible fraction of scans (60 out of 504)
were flagged as “sub-optimal quality” by at least one
reader, and 37 were flagged so by all readers (a sam-
ple image is provided in Supplementary Fig. 3). This
flag did not imply the impossibility of visual assess-
ment; it meant though that—within the boundary of
the readers clinical experience—they deemed that
their evaluation was made more difficult by the image
quality.

Indeed, the apparent higher performance of the
intensity feature C versus the geometric feature G

is actually incidental for this study, as scans prove-
nance and quality are so heterogeneous. In another
study (unpublished) where data came from a sin-
gle center, we observed no significant performance
difference between the intensity and geometric
feature.

The number of flagged scans is rather relevant,
given the cost of the ligand and radiation exposure
to the patient. The peculiar relevance of image qual-
ity and resolution in these investigations is most
notable when dealing with difficult cases, as it is
with those subjects affected by significant gray matter
atrophy. In addition, the relationship between flagged
scans and the blind phase uncertain label suggest
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that diagnostic errors are more likely to be made on
amyloid-negative subjects.

This highlights the need of procedural guidelines
which underline the importance of spatial resolution,
partial volume effect correction, and the general min-
imization of acquisition nuisances; all to be addressed
in the official nuclear medicine societies guidelines
on acquisition protocols.

The general call to quality and consistency in
nuclear medicine imaging peaks in longitudinal stud-
ies. Considering the absolute value of the residuals
|ε| on the 16 subjects with three scans and divid-
ing them into two batches: the first one consisting
of those subjects acquired on the same site and scan-
ner (nsame = 11) and a second one consisting of those
who had at least one scan taken with a different sys-
tem (ndiff = 5) – we find |εsame| = 0.04 ± 0.02 and
|εdiff | = 0.14 ± 0.07. Although the modest number
of samples excludes a definite statement, the influ-
ence of scan consistency (both within and among
different sites) should be at least considered as a nui-
sance in the rather large spread found in the evaluation
of the ASC. For the same reason, we suggest a mini-
mum of three scans to attempt a reasonable estimation
of the annualized score change, unless image qual-
ity and consistency can be guaranteed (and possibly
quantified).

Study limitations

An unavoidable limitation of this study is the
lack of a true gold standard (i.e., neuritic plaques at
autopsy) that can be used to evaluate the accuracy
of the imaging quantitation, and to set an abso-
lute threshold for positivity. Unfortunately, there are
relatively few examples of such cases in literature
(see for instance [30] or [31]). As practical solu-
tion, also shown by [3], we used the consensus
visual read as the reference standard, together with
the CSF Aβ42 and SUVr measurements. The cross-
comparison of these should provide the ground for a
reasonable method validation targeted at the clinical
practice.

Because of the peculiar image treatment which
evaluates the intensity distribution patterns, the main
drawback for the ELBA analysis is the image quality
and consistency. Although convincing evidence can
be drawn even from multi-centric and blind analysis
such as this one, the weight of the acquisition-related
variables can be significant. To correctly estimate this
effect we are planning a more detailed analysis on
images coming from a single center but with differ-

ent acquisition protocols and image reconstruction
parameters.

Another open area of investigation is the brain
ROI specialization. ELBA was developed in order
to overcome the weaknesses inherent to the SUVr
computation, and for this reason the method is not
suitable to be applied on small ROIs such as those
used in SUVr analysis. Still, ELBA could be special-
ized on brain macro regions such as the frontal or
parietal lobes, with potential benefits for the human
reader in the process of clinical assessment.

Finally, the proposed method mimics the visual
process in that it captures global geometrical and
intensity features, and it is therefore reasonably cor-
related to the reader’s assessment once image quality
issues are solved. Nevertheless its usefulness in a
clinical setting is likely to be most informative when
combined with independent measures such as SUVr
and CSF analyses.

ACKNOWLEDGMENTS

This research was supported by Istituto Nazionale
di Fisica Nucleare (INFN), Italy. This research was
also directly supported by grants to FS and to LR
from INFN.

Data collection and sharing for this project was
funded by the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) (National Institutes of Health
Grant U01 AG024904) and DOD ADNI (Department
of Defense award number W81XWH-12-2-0012).
ADNI is funded by the National Institute on
Aging, the National Institute of Biomedical Imaging
and Bioengineering, and through generous contri-
butions from the following: AbbVie, Alzheimer’s
Association; Alzheimer’s Drug Discovery Founda-
tion; Araclon Biotech; BioClinica, Inc.; Biogen;
Bristol-Myers Squibb Company; CereSpir, Inc.;
Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly
and Company; EuroImmun; F. Hoffmann-La Roche
Ltd and its affiliated company Genentech, Inc.;
Fujirebio; GE Healthcare; IXICO Ltd.; Janssen
Alzheimer Immunotherapy Research & Develop-
ment, LLC.; Johnson & Johnson Pharmaceutical
Research & Development LLC.; Lumosity; Lund-
beck; Merck & Co., Inc.; Meso Scale Diagnostics,
LLC.;NeuroRx Research; Neurotrack Technologies;
Novartis Pharmaceuticals Corporation; Pfizer Inc.;
Piramal Imaging; Servier; Takeda Pharmaceutical
Company; and Transition Therapeutics. The Cana-
dian Institutes of Health Research is providing



1456 A. Chincarini et al. / Independent Evaluation of Brain Amyloidosis

funds to support ADNI clinical sites in Canada.
Private sector contributions are facilitated by the
Foundation for the National Institutes of Health
(http://www.fnih.org). The granteeorganization is the
Northern California Institute for Research and Educa-
tion, and the study is coordinated by the Alzheimer’s
Disease Cooperative Study at the University of Cal-
ifornia, SanDiego. ADNI data are disseminated by
the Laboratory for Neuro Imaging at the University
of Southern California.

The proposed method (ELBA) is protected under
patent n. WO2016016833 (A1), WO2015IB55758
20150730.

Authors’ disclosures available online (http://j-alz.
com/manuscript-disclosures/16-0232r1).

SUPPLEMENTARY MATERIAL

The supplementary material is available in the
electronic version of this article: http://dx.doi.org/
10.3233/JAD-160232.

REFERENCES

[1] Dubois B, Feldman HH, Jacova C, Hampel H, Molin-
uevo JL, Blennow K, DeKosky ST, Gauthier S, Selkoe D,
Bateman R, Cappa S, Crutch S, Engelborghs S, Frisoni
GB, Fox NC, Galasko D, Habert MO, Jicha GA, Nord-
berg A, Pasquier F, Rabinovici G, Robert P, Rowe C,
Salloway S, Sarazin M, Epelbaum S, de Souza LC,
Vellas B, Visser PJ, Schneider L, Stern Y, Scheltens
P, Cummings JL (2014) Advancing research diagnos-
tic criteria for Alzheimer’s disease: The IWG-2 criteria.
Lancet Neurol 13, 614-629. Erratum in: Lancet Neurol 13,
757, 2014.

[2] McKhann GM, Knopman DS, Chertkow H, Hyman BT,
Jack CR, Kawas CH, Klunk WE, Koroshetz WJ, Manly
JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, Schel-
tens P, Carrillo MC, Thies B, Weintraub S, Phelps CH
(2011) The diagnosis of dementia due to Alzheimer’s dis-
ease: Recommendations from the National Institute on
Aging-Alzheimer’s Association workgroups on diagnos-
tic guidelines for Alzheimer’s disease. Alzheimers Dement
7, 263-269.

[3] Johnson Ka, Minoshima S, Bohnen NI, Donohoe KJ, Fos-
ter NL, Herscovitch P, Karlawish JH, Rowe CC, Carrillo
MC, Hartley DM, Hedrick S, Pappas V, Thies WH (2013)
Appropriate use criteria for amyloid PET: A report of
the Amyloid Imaging Task Force, the Society of Nuclear
Medicine and Molecular Imaging, and the Alzheimer’s
Association. Alzheimers Dement 9, e–1-16.

[4] Fagan AM, Mintun MA, Mach RH, Lee SY, Dence
CS, Shah AR, LaRossa GN, Spinner ML, Klunk WE,
Mathis CA, DeKosky ST, Morris JC, Holtzman DM (2006)
Inverse relation between in vivo amyloid imaging load and
cerebrospinal fluid Abeta42 in humans. Ann Neurol 59,
512-519.

[5] Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G,
Holt DP, Bergström M, Savitcheva I, Huang Gf, Estrada

S, Ausén B, Debnath ML, Barletta J, Price JC, Sandell
J, Lopresti BJ, Wall A, Koivisto P, Antoni G, Mathis CA,
Långström B (2004) Imaging brain amyloid in Alzheimer’s
disease with Pittsburgh Compound-B. Ann Neurol 55, 306-
319.

[6] Rowe CC, Ng S, Ackermann U, Gong SJ, Pike K, Savage
G, Cowie TF, Dickinson KL, Maruff P, Darby D, Smith
C, Woodward M, Merory J, Tochon-Danguy H, O’Keefe
G, Klunk WE, Mathis CA, Price JC, Masters CL, Ville-
magne VL (2007) Imaging beta-amyloid burden in aging
and dementia. Neurology 68, 1718-1725.

[7] Kinahan PE, Fletcher JW (2010) Positron emission
tomography-computed tomography standardized uptake
values in clinical practice and assessing response to therapy.
Semin Ultrasound CT MR 31, 496-505.

[8] Jagust WJ, Bandy D, Chen K, Foster NL, Landau SM,
Mathis CA, Price JC, Reiman EM, Skovronsky D, Koeppe
RA (2010) The Alzheimer’s Disease Neuroimaging Ini-
tiative positron emission tomography core. Alzheimers
Dement 6, 221-229.

[9] Aisen PS, Petersen RC, Donohue MC, Gamst A, Raman R,
Thomas RG, Walter S, Trojanowski JQ, Shaw LM, Beck-
ett LA, Jack CR, Jagust W, Toga AW, Saykin AJ, Morris
JC, Green RC, Weiner MW (2010) Clinical core of the
Alzheimer’s Disease Neuroimaging Initiative: Progress and
plans. Alzheimers Dement 6, 239-246.

[10] Thirion JP (1998) Image matching as a diffusion process:
An analogy with Maxwell’s demons. Med Image Anal 2,
243-260.

[11] MacQueen J (1967) Some methods for classification and
analysis. In: Proceedings of the Fifth Berkeley Sympo-
sium on Mathematical Statistics and Probability, Volume
1: Statistics; vol. 233. The Regents of the University of
California, pp. 281-297.

[12] Seber GAF (1984) Multivariate Observations. Wiley Series
in Probability and Statistics; John Wiley & Sons, Inc.,
Hoboken, NJ, USA.

[13] Klunk WE, Koeppe RA, Price JC, Benzinger TL, Devous
MD, Jagust WJ, Johnson KA, Mathis CA, Minhas D,
Pontecorvo MJ, Rowe CC, Skovronsky DM, Mintun MA
(2015) The Centiloid Project: Standardizing quantitative
amyloid plaque estimation by PET. Alzheimers Dement 11,
1-15.e4.

[14] Hutton C, Declerck J, Mintun MA, Michael J, Joshi A
(2013) SPAP and Avid florbetapir Analysis Methods.
http://adni.bitbucket.org/docs/SPAP AVID FLORBETA
PIR/sPAP Avid Florbetapir Analysis Methods.pdf

[15] Mattsson N, Insel PS, Landau S, Jagust W, Donohue M,
Shaw LM, Trojanowski JQ, Zetterberg H, Blennow K,
Weiner M (2014) Diagnostic accuracy of CSF A�42 and
florbetapir PET for Alzheimer’s disease. Ann Clin Transl
Neurol 1, 534-543.

[16] Joshi AD, Pontecorvo MJ, Clark CM, Carpenter AP, Jen-
nings DL, Sadowsky CH, Adler LP, Kovnat KD, Seibyl
JP, Arora A, Saha K, Burns JD, Lowrey MJ, Mintun
Ma, Skovronsky DM (2012) Performance characteristics
of amyloid PET with florbetapir F 18 in patients with
Alzheimer’s disease and cognitively normal subjects. J
Nucl Med 53, 378-384.

[17] Vandenberghe R, Adamczuk K, Dupont P, Laere KV,
Chételat G (2013) Amyloid PET in clinical practice: Its
place in the multidimensional space of Alzheimer’s disease.
Neuroimage Clin 2, 497-511.

[18] Klinger RY, James OG, Wong TZ, Newman MF,
Doraiswamy PM, Mathew JP (2013) Cortical �-amyloid

http://j-alz.com/manuscript-disclosures/16-0232r1
http://j-alz.com/manuscript-disclosures/16-0232r1
http://dx.doi.org/10.3233/JAD-160232
http://dx.doi.org/10.3233/JAD-160232
http://adni.bitbucket.org/docs/SPAP_AVID_FLORBETAPIR/sPAP_Avid_Florbetapir_Analysis_Methods.pdf
http://adni.bitbucket.org/docs/SPAP_AVID_FLORBETAPIR/sPAP_Avid_Florbetapir_Analysis_Methods.pdf


A. Chincarini et al. / Independent Evaluation of Brain Amyloidosis 1457

levels and neurocognitive performance after cardiac
surgery. BMJ Open 3, e003669.

[19] Lopresti BJ, Klunk WE, Mathis CA, Hoge JA, Ziolko SK,
Lu X, Meltzer CC, Schimmel K, Tsopelas ND, DeKosky
ST, Price JC (2005) Simplified quantification of Pittsburgh
Compound B amyloid imaging PET studies: A comparative
analysis. J Nucl Med 46, 1959-1972.

[20] Villemagne VL, Burnham S, Bourgeat P, Brown B, Ellis
KA, Salvado O, Szoeke C, Macaulay SL, Martins R, Maruff
P, Ames D, Rowe CC, Masters CL (2013) Amyloid � depo-
sition, neurodegeneration, and cognitive decline in sporadic
Alzheimer’s disease: A prospective cohort study. Lancet
Neurol 12, 357-367.

[21] Jack CR, Wiste HJ, Lesnick TG, Weigand SD, Knopman
DS, Vemuri P, Pankratz VS, Senjem ML, Gunter JL, Mielke
MM, Lowe VJ, Boeve BF, Petersen RC (2013) Brain �-
amyloid load approaches a plateau. Neurology 80, 890-896.

[22] Johnson KA, Sperling RA, Gidicsin CM, Carmasin JS,
Maye JE, Coleman RE, Reiman EM, Sabbagh MN, Sad-
owsky CH, Fleisher AS, Murali Doraiswamy P, Carpenter
AP, Clark CM, Joshi AD, Lu M, Grundman M, Mintun
Ma, Pontecorvo MJ, Skovronsky DM (2013) Florbetapir
(F18-AV-45) PET to assess amyloid burden in Alzheimer’s
disease dementia, mild cognitive impairment, and normal
aging. Alzheimers Dement 9, S72-S83.

[23] Landau SM, Lu M, Joshi AD, Pontecorvo M, Mintun MA,
Trojanowski JQ, Shaw LM, Jagust WJ (2013) Comparing
positron emission tomography imaging and cerebrospinal
fluid measurements of �-amyloid. Ann Neurol 74, 826-836.

[24] Jack CR (2014) PART and SNAP. Acta Neuropathol 128,
773-776.

[25] Camus V, Payoux P, Barré L, Desgranges B, Voisin T,
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